

Future directions and needs for high pressure/high energy geoscience research at NSLS-II

Lars Ehm

National Synchrotron Light Source Brookhaven National Laboratory Mineral Physics Institute Stony Brook University

Earth's Interior Structure

High p-T experiments

Interpretations ⇒ Model

Mineral Properties

Mantle dynamics? Discontinuity? Phase transitions? Element partitioning? Melting? Oxidation? Hydration? High-low spin? Temperature? Composition?

Inner core anisotropy? Super-rotation? Magnetism?

Core dynamo? Composition? Temperature?

CMB reactions? Partitioning? Anisotropy? Melting?

Melts

- The dynamic processes in earth interior involving magmatic liquids (4-6 % of mantel is molten)
- Principal mechanisms for mass and energy (heat) transfer
- Little is known about structure and properties of melts at pressures and temperatures of Earth's interior
 - In situ experiments on silicate melts are currently beyond state of the art
- Building models for mantle dynamics
 - Extrapolation of structure and properties of glasses/melts to pressure and temperature conditions of Earth's mantle
 - Ignoring that glass structure is a snapshot at T_q
 - Neglect probable polyamorphic phase transitions
- Experiments can be state of the art at NSLS-II

Structure factor of liquid phosphorus Katayama *et al.*, 2006

Earth's core and beyond

- Conditions at Earth's core:
 - 330 to 360 GPa
 - 5,000 to 6,000 °C
- Dimensions
 - Sample < 30 μ m \times 5 μ m
 - Laser heating \sim 20 μ m \times 20 μ m
 - X-ray \sim 10 μ m \times 10 μ m

- Structure and properties of iron and iron alloys at core pressure and temperature
 - Understand core anisotropy, super rotation and magnetism
- Structure and properties of H₂, NH₃ and He
 - Interior structure of gas giants

Experiments

New sciences appears across the board at each P interval!

- Crystalline Materials
 - Strain resolution of 10⁻⁶ (reduce gap between lab and geological flow)
- Disordered and non-crystalline materials
 - Nano-crystalline Materials
 - Liquids and Melts
 - Partially crystalline Materials and Mineral Inclusions
 - Elasticity, Density, Structure
- Reactions
 - In situ investigations
 - Time resolved studies
- Single-crystal diffraction
 - In polycrystalline matrix

Proposed Beamlines

- High Pressure Diffraction
 - Super conducting Wiggler
 - 4 End-Stations
 - 2 Fixed Energy Stations
 - DAC: E \sim 35-40 keV, <1 μm

- 60 m length from ID to aisle
- Laser heating (Yt:fiber laser,CO₂),low temperature capabilities, Imaging capabilities
- LVP: E ~ 35-40 keV
 - 500 t Press with interchangeable modules
- 2 Variable Energy Station
- DAC: E \sim 20-100 keV, < 5 μm
 - Laser heating (Yt:fiber laser,CO₂),low temperature capabilities, Imaging capabilities
- LVP: monochromatic & white beam capabilities
 - 2000 t Press with interchangeable modules

Proposed Beamlines

- Infrared Spectroscopy beamline
 - Bending magnet
 - Mid and far infrared
 - Unique & world class program at NSLS → NSLS-II
- Inelastic Scattering and Spectroscopy beamline
 - Undulator (U19) E ~ 5-25 keV, ~ 1eV resolution
 - Taking full advantage of unique source characteristics of NSLS-II
 - XAS, XES, IXS, RIXS, NRIXS, NFS

Support Laboratory

High Pressure will be an important sample environment also on beamlines not dedicated to high pressure

- Gas loading
- Preparation Area
 - Microscopes
 - Mechanical, spark erosion and laser micro-drill system
 - Staging
 - Inert atmosphere loading / glove box
 - Fume hood, Furnaces
- Off line Raman system
- Off line laser heating system
- Micro-engineering capabilities for sample and gasket preparation
- Machine / Electronic Shop

Analytical capabilities → Center for Functional Nanomaterials, other BNL Institutes

- Focused Ion Beam analysis (FIB)
- SEM/TEM
- Micoprobe

Organization

- High pressure working group
 - Interface to beamlines which plan to have high pressure as a sample environment
- Beamline Advisory Teams
 - Ongoing discussion about team members

